skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Islam, A_N_M_Nafiul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite the promise of superior efficiency and scalability, real‐world deployment of emerging nanoelectronic platforms for brain‐inspired computing have been limited thus far, primarily because of inter‐device variations and intrinsic non‐idealities. In this work, mitigation of these issues is demonstrated by performing learning directly on practical devices through a hardware‐in‐loop approach, utilizing stochastic neurons based on heavy metal/ferromagnetic spin–orbit torque heterostructures. The probabilistic switching and device‐to‐device variability of the fabricated devices of various sizes is characterized to showcase the effect of device dimension on the neuronal dynamics and its consequent impact on network‐level performance. The efficacy of the hardware‐in‐loop scheme is illustrated in a deep learning scenario achieving equivalent software performance. This work paves the way for future large‐scale implementations of neuromorphic hardware and realization of truly autonomous edge‐intelligent devices. 
    more » « less
  2. Habituation and sensitization represent nonassociative learning mechanisms in both non‐neural and neural organisms. They are essential for a range of functions from survival to adaptation in dynamic environments. Design of hardware for neuroinspired computing strives to emulate such features driven by electric bias and can also be incorporated into neural network algorithms. Herein, cellular‐like learning in oxygen‐deficient NiOxdevices is demonstrated. Both habituation learning and sensitization response can be achieved in a single device by simply controlling the magnitude of the electric field. Spontaneous memory relaxations and dynamic redistribution of oxygen vacancies under electric bias enable such learning behavior of NiOxunder sequential training. These characteristics in simple device arrays are implemented to learn alphabets as well as demonstrate simulated algorithmic use cases in digit recognition. Transition metal oxides with carefully prepared defect concentrations can be highly sensitive to electronic structure perturbations under moderate electrical stimulus and serve as building blocks for next‐generation neuroinspired computing hardware. 
    more » « less